Abstract
The 4-th order Runge-Kutta method in the complex plane is proposed for numerically advancing the solutions of a system of first order differential equations in one external invariant satisfied by the master integrals related to a Feynman graph. The particular case of the general massive 2-loop sunrise self-mass diagram is analyzed. The method offers a reliable and robust approach to the direct and precise numerical evaluation of master integrals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.