Abstract

The aim of this study is to estimate the effects of some acoustic parameters on thermal lesions of atherosclerotic plaques in high-intensity focused ultrasound (HIFU) fields. A fluid-solid thermal coupling model is presented for describing the temperature elevation and thermal ablation of atherosclerotic plaque. A finite element approach is used to solve the coupling equations in cylindrical coordinates. The model considers the effect of the wall thickness of large arteries. The extent of the tissue lesion is determined by the accumulated thermal lesion with Arrhenius integral equation at each location. The results show the lesion size of atherosclerotic plaque is positively correlated to the excited frequency and acoustic output power with heating time. The computational model indicates HIFU may present a novel option for thermal ablation of atherosclerotic plaques with a completely non-invasive treatment paradigm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call