Abstract

Conventional x-ray sources for medical imaging utilize bremsstrahlung radiation. These sources generate large bandwidth (BW) x-ray spectra with large fractions of photons that impart a dose, but do not contribute to image production. X-ray sources based on laser-Compton scattering can have inherently small energy BWs and can be tuned to low dose-imparting energies, allowing them to take advantage of atomic K-edge contrast enhancement. This paper investigates the use of gadolinium-based K-edge subtraction imaging in the context of mammography using a laser-Compton source through simulations quantifying contrast and dose in such imaging systems as a function of laser-Compton source parameters. Our simulations indicate that a K-edge subtraction image generated with a 0.5% BW (FWHM) laser-Compton x-ray source can obtain an equal contrast to a bremsstrahlung image with only 3% of the dose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.