Abstract
The problem of the evaluation of the generalized stress-intensity factors for re-entrant corners in multi-layered structural components is addressed. An approximate analytical model based on the theory of multi-layered beams is presented. This approach provides a simple closed-form solution for the direct computation of the Mode I stress-intensity factor for the general problem of a re-entrant corner symmetrically meeting a bi-material interface. For the self-consistency of the theory, re-entrant corners in homogeneous materials and cracks perpendicular to bi-material interfaces can also be gained as limit cases of this formulation. According to this approach, the effects of the elastic mismatch parameters, the value of the notch angle and the thicknesses of the layers on the stress-intensity factor are carefully quantified and the results are compared with FE solutions. FE results are obtained by applying a combination of analytical and numerical techniques based on the knowledge a priori of the asymptotic stress field for re-entrant corners perpendicular to a bi-material interface and on the use of generalized isoparametric singular finite elements at the notch tip. A good agreement between approximate and analytical/numerical predictions is achieved, showing the effectiveness of this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.