Abstract

A numerical investigation of the thermal and hydraulic performance of 20 different plate-pin fin heat sinks with various shapes of pin cross-sections (square, circular, elliptic, NACA profile, and dropform) and different ratios of pin widths to plate fin spacing (0.3, 0.4, 0.5, and 0.6) was performed. Finite volume method-based CFD software, Ansys CFX, was used as the 3-D Reynolds-averaged Navier-Stokes Solver. A k-ω based shear-stress-transport model was used to predict the turbulent flow and heat transfer through the heat sink channels. The present study provides original information about the performance of this new type of compound heat sink.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.