Abstract

The numerical evaluation of coherent-state path integrals for quantum dynamical problems is discussed for one-dimensional examples. To propagate an initial state, we use the normal and antinormal ordered coherent-state path integrals combined with a split-operator technique dividing the Hamiltonian into harmonic and anharmonic parts. For numerical purposes integrations must be approximated by quadrature formulae. This leads to a matrix multiplication scheme which is systematically tested for the double-well and Morse potentials. The method is accurate for propagation times much longer than the natural time scale of the system, and it allows for short as well as long time steps without loss of stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.