Abstract

In the present study, the transport and deposition of solid particles to mitigate the loss circulation of fluid through a fracture transversely placed to a vertical channel is numerically investigated. These solid particles (commonly known in the industry as lost circulation materials—LCMs) are injected into the flow during the drilling operation in the petroleum industry, in hopes to control the fluid loss. The numerical simulation of the process follows a two‐stage process: the first characterizes the lost circulation flow and the second the particle injection. The numerical model comprises an Eulerian–Lagrangian approach, in which the dense discrete phase model (DDPM) is combined with the discrete element method (DEM). A parametric analysis is done by varying the vertical channel Reynolds number, the particle‐to‐fluid density ratio, and the particle diameter. Results are shown in terms of the particle’s bed geometric characteristics, focusing on the location inside the fracture where the particles deposit, and the particle bed length, height, and time spent to fill the fracture. Also monitored are the fluid loss reduction over time and the fractured channel bottom pressure (which can be related to the fracture pressure). Results indicate that using a slow/intermediate flow velocity, associated with heavy particles with small diameters, provides the best combination for the efficient mitigation of the fluid loss process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.