Abstract

Group-oriented multicast protocols that provide message ordering and delivery guarantees are becoming increasingly important in distributed system design. However, despite the large number of such protocols, little analytical work has been done concerning their performance, especially in the presence of message loss. This paper illustrates a method for determining the performability of group-oriented multicast protocols using stochastic activity networks, a stochastic extension to Petri nets, and reduced base model construction. In particular, we study the performability of one such protocol, called Psync, under a wide variety of workload and message loss probabilities. The specific focus is on measuring two quantities, the stabilization time-that is, the time required for messages to arrive at all hosts-and channel utilization. The analysis shows that Psync works well when message transmissions are frequent, but exhibits extremely long message stabilization times when transmissions are infrequent and message losses occur. The results provide useful insight on the behavior of Psync, as well as serve as a guide for evaluating the performability of other group-oriented multicast protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.