Abstract

The rolling resistance (RR) and the temperature distribution of 3-D periodic patterned tire, which are induced by the hysteretic loss of viscoelastic rubber compounds, are numerically predicted using the 3-D full patterned tire model. A 3-D periodic patterned tire model is constructed by copying 1-sector mesh in the circumferential direction. Using the 3-D static tire contact analysis, the strain cycles during one revolution are approximated with the strains at Gaussian points of the elements which are sector-wise repeated within the same circular ring of elements, by neglecting the tire rolling effect. The strain amplitude during one revolution of tire is determined by taking the principal value of the half-amplitudes of each strain components in the multi-axial state of strain. The hysteretic loss during one revolution is predicted in terms of the loss modulus of rubber compound and the maximum principal value of the half-amplitudes of six strain components. The temperature dependence of the loss modulus of rubbers is interpolated using the rational 4-parameter fit, and the temperature-nonlinear hysteretic loss and temperature distribution are solved by a staggered iterative computation scheme. Through the numerical experiments, the validity of the proposed prediction method is examined from the comparison with the experiment and the rolling resistance and temperature distribution of 3-D periodic patterned tire model are compared with those of the main-grooved simple tire model. As well, the dependence of the rolling resistance and temperature on the tire tread pattern is numerically investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call