Abstract
We perform Transition matrix Monte Carlo simulations to evaluate the entropy of rhombus tilings with fixed polygonal boundaries and 2D-fold rotational symmetry. We estimate the large-size limit of this entropy for D=4 to 10. We confirm analytic predictions of N. Destainville et al., J. Stat. Phys. 120, 799 (2005) and M. Widom et al., J. Stat. Phys. 120, 837 (2005), in particular that the large size and large D limits commute, and that entropy becomes insensible to size, phason strain and boundary conditions at large D. We are able to infer finite D and finite size scalings of entropy. We also show that phason elastic constants can be estimated for any D by measuring the relevant perpendicular space fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.