Abstract

This paper presents a numerical solution approach of solving smooth- and rough-surface contact problems involving distributed inhomogeneities with arbitrary shapes and different material properties, based on the numerical equivalent inclusion method (EIM). Full 3D FFT techniques and a mesh differential refinement scheme are incorporated into the proposed solution method to enhance the efficiency and flexibility. Comparative studies referencing the FEM and a simplified method demonstrate the efficiency and accuracy of the present method. Computations of several heterogeneous contact cases verify the capability of the method in solving complicated and rough-surface contact problems involving materials with distributed inhomogeneities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.