Abstract

ABSTRACTIn this paper, we investigate several modified exponential finite-difference methods to approximate the solution of the one-dimensional viscous Burgers' equation. Burgers' equation admits solutions that are positive and bounded under appropriate conditions. Motivated by these facts, we propose nonsingular exponential methods that are capable of preserving some structural properties of the solutions of Burgers' equation. The fact that some of the techniques preserve structural properties of the solutions is thoroughly established in this work. Rigorous analyses of consistency, stability and numerical convergence of these schemes are presented for the first time in the literature, together with estimates of the numerical solutions. The methods are computationally improved for efficiency using the Padé approximation technique. As a result, the computational cost is substantially reduced in this way. Comparisons of the numerical approximations against the exact solutions of some initial-boundary-value problems for different Reynolds numbers show a good agreement between them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.