Abstract

The discontinuous Galerkin method (DGM) has been applied to investigate seismic wave propagation recently. However, few studies have examined the dispersion property of DGM with different basis functions. Therefore, three common basis functions, Legendre polynomial, Lagrange polynomial with equidistant nodes, and Lagrange polynomial with Gauss-Lobatto-Legendre (GLL) nodes, are used for numerical approximation. The numerical dispersion and anisotropy numerical behavior of acoustic and elastic waves are compared, and the numerical errors of different order methods are analyzed. The result shows that the dispersion errors for all basis functions reduce generally with increasing interpolation orders, but with large differences in different directions. Specifically, the Legendre basis function and Lagrange basis function with GLL nodes have attractive advantages over the Lagrange polynomial with equidistant nodes for numerical computation. We verified the dispersion properties by theoretical and numerical analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.