Abstract

A general method to evaluate the Cartesian derivatives of the dipole moment and polarizability of electronic excited states is presented. This method, based on successive numerical differentiations of the dipole moment, is implemented in a locally developed package of programs called VibKit. An application to describe the vibrational signatures of the first excited state of julolidinemalononitrile in comparison to those of its ground state has been performed using time-dependent density functional theory (TDDFT). The modifications of the IR and Raman signatures are shown to be related to the delocalization of the charge density and geometry modifications upon excitation, as evidenced by the use of group coupling matrices (GCMs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.