Abstract

In this paper, numerical differentiation is applied to integrate plastic constitutive laws and to compute the corresponding consistent tangent operators. The derivatives of the constitutive equations are approximated by means of difference schemes. These derivatives are needed to achieve quadratic convergence in the integration at Gauss-point level and in the solution of the boundary value problem. Numerical differentiation is shown to be a simple, robust and competitive alternative to analytical derivatives. Quadratic convergence is maintained, provided that adequate schemes and stepsizes are chosen. This point is illustrated by means of some numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.