Abstract
The signal velocity of a unit-step-function-modulated signal with a constant carrier frequency ωc that is propagating in a linear dispersive medium with absorption (the Lorentz medium) is determined through numerical simulation and compared with that predicted by rigorous asymptotic theory. The exceptional agreement between these purely numerical results and the asymptotic theory, including the bifurcation of the signal velocity at carrier frequencies well above the medium resonance frequency, serve to validate completely both the description of the signal arrival afforded by the asymptotic theory and the physical propriety of this velocity measure in dispersive pulse propagation for input pulses with an instantaneous turn-on time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.