Abstract

The formation of planetesimals requires the growth of dust particles through collisions. Micron-sized particles must grow by many orders of magnitude in mass. To understand and model the processes during this growth, both the mechanical properties and the interaction cross sections of aggregates with surrounding gas must be well understood. Recent advances in experimental (laboratory) studies now provide the background for pushing numerical aggregate models to a new level. We present the calibration of a previously tested model of aggregate dynamics. We use plastic deformation of surface asperities as the physical model to match the velocities needed for sticking with experimental results. The modified code is then used to compute both the compression strength and the velocity of sound in the aggregate at different densities. We compare these predictions with experimental results and conclude that the new code is capable of studying the properties of small aggregates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.