Abstract

Topologically ordered phases of matter, in particular so-called symmetry enriched topological (SET) phases, can exhibit quantum number fractionalization in the presence of global symmetry. In Z_2 topologically ordered states in two dimensions, fundamental translations T_x and T_y acting on anyons can either commute or anticommute. This property, crystal momentum fractionalization, can be seen in a periodicity of the excited-state spectrum in the Brillouin zone. We present a numerical method to detect the presence of this form of symmetry enrichment given a projected entangled pair state (PEPS); we study the minima of spectrum of correlation lengths of the transfer matrix for a cylinder. As a benchmark, we demonstrate our method using a modified toric code model with perturbation. An enhanced periodicity in momentum clearly reveals the anticommutation relation {T_x,T_y}=0$ for the corresponding quasiparticles in the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.