Abstract

Abstract Absorbable stents made of poly-L-lactic acid (PLLA) exhibit inferior mechanical properties compared with metal based devices. Therefore, design optimization by means of finite element analysis (FEA) plays an important role in development of high performance absorbable stents. In the present study, three different meander structures made of PLLA material were compared in terms of their radial resistive force (RRF) using FEA. Material tests were performed to obtain input parameters of PLLA for the simulation. FEA was carried out to simulate the RRF and the length change of the meander structures as a function of the diameter. In addition, the numerical results were compared to the experimental outcome using corresponding meander based stents performing radial testing with a segmented head mechanism. Comparable high stresses occurred in the Ubends of the examined stent designs. In designs with a large radius of curvature less stress was observed while crimping. One meander structure developed comparatively higher structural resistance against radially acting forces, due to its curved strut design. In general, FEA revealed consistent results compared to the experimental investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call