Abstract

We report a compact polarization beam splitter (PBS) consisting of slotted waveguides assisted by composite subwavelength gratings (CSWGs) on a silicon-on-insulator platform. By tailoring the material anisotropy of the CSWGs, coupling strengths of transverse-electric (TE) and transverse-magnetic (TM) polarization coupling strengths are respectively suppressed and enhanced significantly, achieving concurrent improvements in polarization extinction ratio (PER), device footprint, and working bandwidth (BW) compared with purely slotted waveguides. Differing in construction from mono-material SWGs, the CSWGs comprise silicon strips covered with a silicon dioxide (SiO2) layer of the same thickness as the slot layer of the slotted waveguides, simplifying the fabrication process and further reducing device length. Numerical simulations show significant improvement in PERTM from about 15 dB for the purely slotted waveguides to 28 dB for the proposed design, with a 40% reduction in device length at a wavelength of λ = 1550 nm. Within a BW of ∼60 nm, the proposed PBS achieves PERTM ∼25 dB, PERTE >15 dB, and insertion loss (ILs) <0.1 dB for TE and TM modes. Fabrication tolerance investigations are also described and discussed. The proposed idea paves the way for simultaneous improvements in PER, footprint, and working BW for PBSs comprising a variety of coupled-waveguide systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.