Abstract
AbstractThe failure of steel connections can lead to the progressive collapse of the entire structure. Accurate modelling of steel connections at elevated temperature allows structural fire engineers to design steel structures that may deal with the severity of a fire. The prEN 1993-1-14 proposes numerical design calculation for the static design check of steel connections. This paper presents a component-based finite element model (CBFEM) to design the T-stubs at elevated temperatures. The generated model is verified and validated against the results from the analytical model and experimental study. The resistance, failure modes and the load-deformation curves are used to validate and verify the CBFEM models for steel connection design at elevated temperatures. The results stated that the CBFEM is a practical design tool to model bolted connections at elevated temperatures and it is possible to apply the recommended 5% plastic limit strain by EN 1993-1-5 for fire design of bolted connections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.