Abstract

A parameter retrieval algorithm based on the causality principle and Kramers—Kronig (KK) relations is employed to calculate the effective parameters of three-dimensional (3D) metamaterials. Using KK relations, the branch selecting problem, which is the challenge of effective parameter retrieval method, can be removed. To reveal the validity of the proposed algorithm, the constitutive refractive index of a homogeneous polymide cube is extracted. The result is in excellent agreement with the intrinsic refractive index of the polymide. Finally, the two terahertz metamaterials with 3D structures are designed and their effective parameters are then retrieved using the proposed algorithm. Numerical simulations are performed using the full-wave electromagnetic solver, CST Microwave Studio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.