Abstract

Although it has been demonstrated that high-Z doped plastic can suppress the Rayleigh–Taylor instability, its usability in direct-drive implosion design on mega-joule class reactors is still controversial. In this study, the radiation hydrodynamics code was validated by a planar target experiment of a brominated plastic target, since the result including high-Z strongly depends on the opacity model. Opacity for bromine ion based on the detailed configuration accounting model has better agreement with the experimental results compared to that of the average-ion model. Two-dimensional implosion simulations assuming a mega-joule driver were also conducted to estimate whether a brominated plastic ablator can suppress the hydrodynamic instability. It was revealed that a brominated plastic, which has an appropriate fraction of doping, can assist the generation of a high-density core by suppression of the hydrodynamic instability. A high-Z doped target can suppress the Rayleigh–Taylor instability at the foot-dri...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.