Abstract

PurposeIntegrity assessment is used to ensure reliability operation of a pressurized equipment containing defects. Based on data of cylindrical shell dimensions, operation conditions, material properties and crack dimensions, an assessment can be carried out, using either Level 1, Level 2 or Level 3 procedure. Assessment using Level 3 procedure within the code requires a finite element simulation in order to generate both the evaluation point and the failure assessment diagram (FAD) that serves as the acceptance criteria. The purpose of this paper is to provide the numerical data which are used for integrity assessment of a pressure vessel containing crack. Here, a parametric study has been carried out to generate such result for the cases of longitudinal crack defect in a cylindrical shell for a number of common cases, in terms of thickness-to-radius ratio, crack size ratio and crack aspect ratio.Design/methodology/approachThe evaluation of stress intensity factor is determined through J-integral parameter found using a finite element analysis with a specially meshed strategy incorporating the crack. A comparison is made against stress intensity factor provided by the code.FindingsA good agreement is obtained with percent error of 2.13 percent for low aspect ratio crack, and 0.57 percent for high aspect ratio crack. Furthermore, a study has been carried out using the methodology for 160 cases, covering both cases already available in the code and other cases of crack in cylindrical shells. The result can be used as a complement to the existing tabular data available in the code for Level 2 assessment, to be used for integrity analysis of damaged cylindrical shells based on the FAD criteria.Originality/valueThe result can be used as a complement to the existing tabular data available in the API 579 code for Level 2 assessment, to be used for integrity analysis of damaged cylindrical shells based on the FAD criteria. New equations were generated based on finite element analysis and can be used for Level 3 assessment of the code.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call