Abstract

Aluminium foam and Carbon Fiber Reinforced Plastic (CFRP) are widely used composite materials in automobile industries due to the benefits of lightweight and energy absorption capacity. Therefore, in this study, the numerical crashworthiness analysis of 2014 Aluminium-SiCp (2014AA-SiCp) foam filled in CFRP tube has been performed under impact loading. Quasi-static compression tests have been conducted on 2014AA-SiCp foam to extract the mechanical parameters required for numerical simulations. To understand the crushing behavior under the axial impact loading, 2014AA-SiCp foam-filled CFRP tube has been numerically modelled using ABAQUS® software. The parametric study was carried out to explore the effects of filler material, foam densities, and impact velocities on crushing behavior. It was found that load increases with the rise in foam density and impact velocity. Moreover, the deformation increases with the increase in impact velocity. Results showed that the load carrying capacity of foam filled CFRP tubes was significantly improved compared to that of empty CFRP tubes. The foam filled CFRP specimens exhibited peak load of 122 kN and an energy absorption capacity of 3012 J, showcasing an approximate improvement of 43% and 11% respectively, over the values obtained for empty CFRP tubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call