Abstract

As an important basis for determining the state of the liver, the mechanical responses are associated with many factors, and belong to a complex coupling system. Liver tissue has significantly complicated vascular channels. The vascular diameter, vascular deflection angle and vascular depth are defined as the key characteristic parameters. The influences of these parameters on the mechanical responses were analyzed. On the basis of the real mechanical parameters, the coupled numerical model of blood vessel, blood flow and liver tissue was established. The corresponding mechanical responses are obtained by utilizing the different vascular parameters. The effects of vascular parameters on the differences among the mechanical response difference and high strain modulus were analyzed. It was found that the blood vessels in the central area could reduce the liver mechanical response. The inner diameter parameter had main influences on the regions where the stain was more than 0.1. The mechanical difference is greater with larger inner diameter. The influences of vascular depth are greatest when the vascular depth was in the intermediate value, which would increase the liver mechanical responses. With the increment of vascular deflection angle, the liver mechanical response would also increase, and exceed the mechanical response without blood vessels. The findings after analyzing the influence of vascular parameters will provide a basis for the quantitative studies on the influence of blood vessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.