Abstract

In this investigation, numerical convergence of finite element solutions obtained using the B-spline approach and the absolute nodal coordinate formulation (ANCF) is discussed. Furthermore, equivalence of the two formulations with different orders of polynomials and degrees of continuity is demonstrated by several numerical examples. The degree of continuity can be easily controlled in B-spline elements by changing knot multiplicities, while continuity conditions associated with higher order derivatives need to be imposed to achieve C2 and higher continuities in ANCF elements. In order to compare element performances of the third and quartic B-spline and ANCF elements, the three-node quartic ANCF beam element is developed. It is demonstrated in several numerical examples that use of B-spline and ANCF elements with same orders and continuities leads to identical results. Furthermore, effects of polynomial orders and continuities on the accuracy and numerical convergence are demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.