Abstract

Wear is a problem for metal on polymer (MOP) hip implants to perform lifetime endurance. Polymer excessive volumetric loss leads to implant failures. Attempts to solve this problem are usually initiated with tribological tests. The method is time-consuming because the sliding speed is low. There is a faster way to use a computational method to gather wear data. This research aims to investigate the numerical convergence of predicted wear volume with the finite element method (FEM). The model is a commercially pure titanium (cp Ti) and ultra-high molecular weight polyethylene (UHMWPE) MOP hip implant. A dynamic Paul physiological load was applied to the model. Volumetric loss of the polymer was calculated with a wear equation involved nonlinear contact load and contact area. The inputs of calculation are wear factor and the computational contact mechanic performed by FEM. The wear factor was obtained by performing biotribological experiments with a multidirectional pin on disc tribotest. Predicted wear volume was validated with hip simulator experimental data from the literature. Convergences were found at the mesh density of 1.38 elements/mm3. An acceptable numerical error was obtained in the model with 1 mm element size for femoral head and 0.3 mm for acetabular cup. This model was then used for the investigation of load increment effects. The result is that load increment variations do not affect wear volume and contact mechanic numerical outputs. The calculated stresses are below the UHMWPE yield stress limit. In this elastic region, the effects of strain rate caused by load increment are negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.