Abstract

Numerical methods are proposed for constructing Nash and Stackelberg solutions in a two-player linear non-zero-sum positional differential game with terminal cost functionals and geometric constraints on the players’ controls. The formalization of the players’ strategies and of the motions generated by them is based on the formalization and results from the theory of positional zero-sum differential games developed by N.N. Krasovskii and his school. It is assumed that the game is reduced to a planar game and the constraints on the players’ controls are given in the form of convex polygons. The problem of finding solutions of the game may be reduced to solving nonstandard optimal control problems. Several computational geometry algorithms are used to construct approximate trajectories in these problems, in particular, algorithms for constructing the convex hull as well as the union, intersection, and algebraic sum of polygons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call