Abstract

A unified design sensitivity analysis theory and a linearization method of optimization are employed for structural component shape optimization. A material derivative method for shape design sensitivity analysis, using the variational formulation of the equations of elasticity and the finite element method for numerical analysis, is used to calculate derivatives of stress and other structural response measures with respect to boundary shape. Alternate methods of boundary shape parameterization are investigated, through solution of two test problems that have been treated previously by other methods: a fillet and a torque arm. Numerical experiments with these examples and a variety of finite element models show that component shape optimization requires careful selection of boundary parameterization, finite element model, and finite element grid refinement techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.