Abstract

Methods are presented for approximating the conformal map from the interior of various regions to the interior of simply-connected target regions with a smooth boundary. The methods for the disk due to Fornberg (1980) and the ellipse due to DeLillo and Elcrat (1993) are reformulated so that they may be extended to other new computational regions. The case of a cross-shaped region is introduced and developed. These methods are used to circumvent the severe ill-conditioning due to the crowding phenomenon suffered by conformal maps from the unit disk to target regions with elongated sections while preserving the fast Fourier methods available on the disk. The methods are based on expanding the mapping function in the Faber series for the regions. All of these methods proceed by approximating the boundary correspondence of the map with a Newton-like iteration. At each Newton step, a system of linear equations is solved using the conjugate gradient method. The matrix-vector multiplication in this inner iteration can be implemented with fast Fourier transforms at a cost of O( N log N). It is shown that the linear systems are discretizations of the identity plus a compact operator and so the conjugate gradient method converges superlinearly. Several computational examples are given along with a discussion of the accuracy of the methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.