Abstract
Numerical solution of ordinary differential equations is the most important technique which is widely used for mathematical modelling in science and engineering. The differential equation that describes the problem is typically too complex to precisely solve in real-world circumstances. Since most ordinary differential equations are not solvable analytically, numerical computations are the only way to obtain information about the solution. Many different methods have been proposed and used is an attempt to solve accurately various types of ordinary differential equations. Among them, Runge-Kutta is a well-known and popular method because of their good efficiency. This paper contains an analysis for the computations of the modified Runge-Kutta method for nonlinear second order initial value problems. This method is wide quite efficient and practically well suited for solving linear and non-linear problems. In order to verify the accuracy, we compare numerical solution with the exact solution. We also compare the performance and the computational effort of this method. In order to achieve higher accuracy in the solution, the step size needs to be small. Finally, we take some examples of non-linear initial value problems (IVPs) to verify proposed method. The results of that example indicate that the convergence, stability analysis, and error analysis which are discussed to determine the efficiency of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.