Abstract

The time evolution of the flow and temperature fields in industrial scale gas-injected molten iron baths are numerically analyzed. For the vertical injection case, a cylindrical vessel, containing molten iron, is considered. For the horizontal injection system, a cubical vessel is chosen. The Eulerian approach is used for the formulation of both the gas and the liquid phase transports. Turbulence in the liquid phase is predicted using a two-equation k-e Model. A constant effective viscosity is used for the gas phase turbulence. For the interphase friction and heat transfer coefficients, correlations from the literature are used. In order to realistically model the volume expansion due to gas injection, the computational domain is extended beyond the initial undisturbed liquid height.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.