Abstract
The aim of this paper is to present a numerical technique for the computation of connections between periodic orbits in nonautonomous and autonomous systems of ordinary differential equations. First, the existence and computation of connecting orbits between fixed points in discrete dynamical systems is discussed; then it is shown that the problem of finding connections between equilibria and periodic solutions in continuous systems may be reduced to finding connections between fixed points in a discrete system. Implementation of the method is considered: the choice of a linear solver is discussed and phase conditions are suggested for the discrete system. The paper concludes with some numerical examples: connections for equilibria and periodic orbits are computed for discrete systems and for nonautonomous and autonomous systems, including systems arising from the discretization of a partial differential equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Bifurcation and Chaos
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.