Abstract

In the present study, single steam bubble condensation behaviors in subcooled water have been simulated using Moving Particle Semi-implicit (MPS) method. The liquid phase was modeled using moving particles and the two phase interface was set to be a movable boundary which can be tracked by the topological position of the interfacial particles. The interfacial heat transfer was determined according to the heat conduction through the interfacial liquid layer and the coupling between momentum and energy was specially treated. Computational results showed that the bubble experiences various deformations at lower degrees of liquid subcooling while it remains nearly spherical at higher degrees of liquid subcooling. The bubble lifetime is nearly proportional to bubble size and is prolonged at higher system pressures. Bubble lifetime obtained from the MPS method agrees well with the experiments of Kamei and Hirata (1986, 1987), however it is lower than the predictions of Sudhoff et al. (1982). The underestimation is caused by severe bubble deformation at lower degrees of subcooling. The present study exhibits some fundamental characteristics of single steam bubble condensation and is expected to be instructive for further applications of the MPS method to evaluate more complicated bubble dynamics problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.