Abstract

The present work is devoted to the numerical study of laminar natural convection flow from a heated horizontal cylinder under diverse surface boundary conditions using the spline fractional step method. A general formulation to treat mixed boundary conditions using the spline approximation has been presented. Numerical solutions have been obtained by solving the Navier-Stokes and energy equations. The results for the isothermal boundary condition as well as for the uniform heat flux are in good agreement with published experimental data and with other solutions presently available in the literature. Some new computations at very high Rayleigh numbers indicate the existence of attached separation vortices in the downstream plume region, the appearance of these vortices being dependent on the values of the Biot number. All results were computed on a personal computer using unequally spaced grids that provided good results with a minimum number of computational points. The numerical scheme presented here app...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.