Abstract

A computational procedure is presented which is capable of determining the supersonic flow field surrounding three-dimensional wing-body configurations such as a delta-wing space shuttle. The governing equations in conservation-law form are solved by a finite difference method using a second-order noncentered algorithm between the body and the outermost shock wave, which is treated as a sharp discontinuity. Secondary shocks which form between these boundaries are captured automatically, and the intersection of these shocks with the bow shock posed no difficulty. Resulting flow fields about typical blunt nose shuttle-like configurations at angle of attack are presented. The differences between perfect and real gas effects for high Mach number flows are shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call