Abstract

Using single cluster flip Monte Carlo simulations we accurately determine new finite size scaling functions which are expressed only in terms the variable $x = \xi_L / L$, where $\xi_L$ is the correlation length in a finite system of size $L$. Data for the d=2 and d=3 Ising models, taken at different temperatures and for different size lattices, show excellent data collapse over the entire range of scaling variable for susceptibility and correlation length. From these finite size scaling functions we can estimate critical temperatures and exponents with rather high accuracy even though data are not obtained extremely close to the critical point. The bulk values of the renormalized four-point coupling constant are accurately measured and show strong evidence for hyperscaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.