Abstract

The well known Euler-Lagrange equations of motion for constrained variational problems are derived using the principle of virtual work. These equations are used in the modelling of multibody systems and result in differential-algebraic equations of high index. Here they concern an N-link pendulum, a heavy aircraft towing truck and a heavy off-highway track vehicle. The differential-algebraic equation is cast as an ordinary differential equation through differentiation of the constraint equations. The resulting system is computed using the integration routine LSODAR, the Euler and fourth order Runge-Kutta methods. The difficulty to integrate this system is revealed to be the result of many highly oscillatory forces of large magnitude acting on many bodies simultaneously. Constraint compliance is analyzed for the three different integration methods and the drift of the constraint equations for the three different systems is shown to be influenced by nonlinear contact forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call