Abstract

Abstract In this article, we are interested in solving numerically backward doubly stochastic differential equations (BDSDEs) with random terminal time τ. The main motivations are giving a probabilistic representation of the Sobolev’s solution of Dirichlet problem for semilinear SPDEs and providing the numerical scheme for such SPDEs. Thus, we study the strong approximation of this class of BDSDEs when τ is the first exit time of a forward SDE from a cylindrical domain. Euler schemes and bounds for the discrete-time approximation error are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.