Abstract
The closing velocity of the leaflets of mechanical heart valves is excessively rapid and can cause the cavitation phenomenon. Cavitation bubbles collapse and produce high pressure which then damages red blood cells and platelets. The closure mechanism of the trileaflet valve uses the vortices in the aortic sinus to help close the leaflets, which differs from that of the monoleaflet or bileaflet mechanical heart valves which mainly depends on the reverse flow. We used the commercial software program Fluent to run numerical simulations of the St. Jude Medical bileaflet valve and a new trileaflet mechanical heart valve. The results of these numerical simulations were validated with flow field experiments. The closing velocity of the trileaflet valve was clearly slower than that of the St. Jude Medical bileaflet valve, which would effectively reduce the occurrence of cavitation. The findings of this study are expected to advance the development of the trileaflet valve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.