Abstract

Ultrasonic telemetry imaging systems are used to monitor such immersed structures as main vessels of nuclear reactors. The interaction between acoustic beams and targets involves scattering phenomena, mainly specular reflection and tip diffraction. In order to assist in the design of imaging systems, a simulation tool is required for the accurate modeling of such phenomena. Relevant high-frequency scattering models have been developed in electromagnetic applications, in particular, the geometrical optics (GO), Geometrical Theory of Diffraction (GTD) and its uniform corrections (UAT and UTD), Kirchhoff approximation (KA) and Physical Theory of Diffraction (PTD). Before adopting any of them for simulation of scattering of acoustic waves by edged immersed rigid bodies, it is important to realize that in acoustics the characteristic dimension to the wave length ratio is usually considerably smaller than in electromagnetics and a further study is required to identify models’ advantages, disadvantages and regions of applicability. In this paper their numerical comparison is carried out. As the result, the most suitable algorithm is identified for simulating ultrasonic telemetry of immersed rigid structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.