Abstract

The characteristics of magnetized capacitively coupled plasmas (CCPs) driven by combined dc/rf sources in argon have been investigated by a one-dimensional implicit Particle-in-cell/Monte Carlo collision model. Discharges operating at 13.56 MHz with a fixed rf voltage of 300 V are simulated at the pressure of 50 mTorr in argon. Four cases, i.e., CCP driven by rf source, rf + dc sources, rf source with magnetic field, and rf + dc sources with magnetic field, are presented and compared at the Vdc = −100 V, B = 50 Gs, and γi = 0.2. It is found that, with the influence of dc voltage and magnetic field, the plasma density has been greatly enhanced by over one order of magnitude over the rf-only case. This is due to the fact that the mean free path of electrons decreases by the cyclotron motion and the energetic secondary electrons are trapped by the magnetic field, leading to a significant increase in heating and ionization rates. Moreover, transition of the stochastic to Ohmic electron heating mechanism takes place as the magnetic field increases because electron kinetics can be strongly affected by the magnetic field. In general, we have demonstrated that such a configuration will enhance the discharge and thus enable CCPs work under extremely high energy density stably that can never be operated by any other configurations. We expect that such a configuration can promote many related applications, like etching, sputtering, and deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.