Abstract

A numerical simulation of attosecond harmonic pulse generation in a three-dimensional field-ionizing gas is presented. Calculated harmonic efficiencies quantitatively reproduce experimental findings. This allows a quantitative characterization of attosecond pulse generation revealing information currently not accessible by experiment. The rapid phase variation and spatiotemporal distortions of harmonics are smaller than anticipated, allowing focusing of 30-nm, 750-as pulses to intensities in excess of 10(13) W/cm(2). Feasibility of such pulses brings novel applications such as extreme ultraviolet nonlinear optics and attosecond pump probe spectroscopy within reach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call