Abstract

This article presents the use of data processing to apprehend mathematical questions such as the Riemann Hypothesis (RH) by numerical calculation. Calculations are performed alongside graphs of the argument of the complex numbers ζ ( x + i y ) = a + i b and ξ ( x + i y ) = p + i q , in the critical strip. On the one hand, the two-dimensional surface angle tan − 1 ( b / a ) of the Riemann Zeta function ζ is related to the semi-angle of the fractional part of y 2 π ln ( y 2 π e ) and, on the other hand, the Ksi function ξ of the Riemann functional equation is analyzed with respect to the coordinates ( x , 1 − x ; y ) . The computation of the power series expansion of the ξ function with its symmetry analysis highlights the RH by the underlying ratio of Gamma functions inside the ξ formula. The ξ power series beside the angle of both surfaces of the ζ function enables to exhibit a Bézout identity a u + b v ≡ c between the components ( a , b ) of the ζ function, which illustrates the RH. The geometric transformations in complex space of the Zeta and Ksi functions, illustrated graphically, as well as series expansions, calculated by computer, make it possible to elucidate this mathematical problem numerically. A final theoretical outlook gives deeper insights on the functional equation’s mechanisms, by adopting a computer–scientific perspective.

Highlights

  • This article presents the use of data processing to apprehend mathematical questions such as the Riemann Hypothesis (RH) by numerical calculation

  • There exists u0, . . . , um ∈ K[X1, . . . , Xn ] verifying a0 u0 + . . . + am um = 1. Adjacent to this identity, to write the functional equation consists in trying ζ(s) = a + ib = ξ(s) ζ(ŝ) = (p + iq) â + ib = pâ − qb + i pb + qâ in the form of two equations au + bv = c and i(au0 + bv0 ) = ic0 . ζ and ξ are series, and we study the divisibility of these series and their congruence with reference to a pivotal series

  • The section apprehends the calculations in the critical strip in order to prove that the points s of the critical line are located on the limit of a property of the functional relation

Read more

Summary

Introduction

This article presents the use of data processing to apprehend mathematical questions such as the Riemann Hypothesis (RH) by numerical calculation. The geometric transformations in complex space of transcendental functions, illustrated graphically, as well as series expansions, calculated by computer, make it possible to elucidate this mathematical problem numerically. The article sets out its reasoning using descriptive graphics. The mathematical calculations have been developed and checked by computer, and the graphics have been performed through extensive specific Python programs. The RH [1] (“non-trivial zeros are located exclusively on the critical line x = 1/2”) is illustrated here with mathematical notions and numerical calculations: power series expansions of the Gamma function and Ksi function of the Riemann’s functional equation, and calculations on complex numbers and angles between two surfaces or two curves. The whole study is focused in the critical strip S

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.