Abstract

A numerical technique is developed for solving axisymmetric, incompressible, turbulent swirling flow problems. The Reynolds stresses are expressed in terms of a scalar turbulent viscosity, μt = ρCμk2/ε. The turbulent kinetic energy, k, and ε, the turbulent energy dissipation rate, are obtained by solving the corresponding transport equations; Cμ is an empirical constant. Flow calculation results are presented for the coaxial flow configuration shown in Fig. 1. Of particular interest is the presence of flow recirculation due to vortex breakdown. Effects of inner and outer swirl, axial velocity ratio and Reynolds number on the formation, size, and location of the recirculation zone are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.