Abstract

The revised smoothed particle hydrodynamics method based on Riemann solution has been used to calculate the total horizontal wave force acting on a perforated caisson with a top cover. The interaction process between the wave and perforated caisson is simulated in a two-dimensional numerical wave flume which is verified by linear regular wave theory, water particles flowing in or out of the dissipation chamber are also described in this article, including the distribution of velocity vector. The effect of main non-linear influence factor on total horizontal force is examined here; wave pressure distribution along the height of the perforated caisson in front, inner side or the rear wall of the dissipation chamber is also presented in order to exhibit the more practical performance of perforated caisson with a top cover. The relationship between the total horizontal force and top cover height is anglicized, and the influence of top cover height on components of the total horizontal force is discussed here. A comparison between the numerical total horizontal force results and values tested from the test data is finished; it can be seen that the numerical results agree well with the test data. It is concluded that the smoothed particle hydrodynamics method described in this article can be utilized to calculate the total horizontal force on a perforated caisson with a top cover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.