Abstract

AbstractThe Finite Element Method in the field of materials modeling is closely connected to the tangent stiffness matrix of the constitutive law. This so called Jacobian matrix is required at each time increment and describes the local material behavior. It assigns a stress increment to a strain increment and is of fundamental importance for the numerical determination of the equilibrium state. For increasingly sophisticated material models the tangent stiffness matrix can be derived analytically only with great effort, if at all. Numerical methods are therefore widely used for its calculation. We present our method to calculate the tangent stiffness matrix for the logarithmic strain measure. The approach is compared with other commonly used procedures. A significant increase in accuracy can be achieved with the proposed method. (© 2014 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.