Abstract

In this paper, we consider one‐dimensional Schrödinger operators Sq on with a bounded potential q supported on the segment and a singular potential supported at the ends h0, h1. We consider an extension of the operator Sq in defined by the Schrödinger operator and matrix point conditions at the ends h0, h1. By using the spectral parameter power series method, we derive the characteristic equation for calculating the discrete spectra of operator . Moreover, we provide closed‐form expressions for the eigenfunctions and associate functions in the Jordan chain given in the form of power series of the spectral parameter. The validity of our approach is proven in several numerical examples including self‐adjoint and nonself‐adjoint problems involving general point interactions described in terms of δ‐ and δ′‐distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.