Abstract

In various applications, welding-induced residual stresses have a substantial impact on the integrity of welded constructions. Tensile residual stress can promote stress-corrosion cracking, brittle fracture, and reduces the fatigue life in service, as well as influences component design due to critical stress concentrations within the component.In the present paper, a six bead multi-pass gas metal arc weld of 20mm thick structural steel S355J2+N is experimentally and numerically investigated. The studies include transient 2D and 3D numerical calculations which consider temperature-dependent material properties, phase transformations, “thermal” tempering, transformation plasticity, volume change due to phase transformation, an elastic–plastic material model, and isotropic strain hardening. The experimentally determined and calculated residual stresses are in a good agreement. Furthermore, the influence of the preheat and interpass temperature on welding-induced residual stresses is shown in the present investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.